Association of Agrometeorologists

Simulation performance of selected global and regional climate models for temperature and rainfall in some locations in India


Global and regional climate models are reported to have inherent bias in simulating the observed climatology of a region. This bias of climate models is the major source of uncertainties in climate change impact assessments. Therefore, use of bias corrected simulated climate data is important. In this study, the bias corrected climate data for 30 years’ period (1976-2005) from selected common four GCMs and RCMs for six Indian locations are compared with the respective observed data of India Meteorological Department. The analysis indicated that the RCMs performance is much better than GCMs after bias correction for minimum and maximum temperatures. Also, RCMs performance is better than GCMs in simulating extreme temperatures. However, the selected RCMs and GCMs are found to either over estimate or under estimate the rainfall despite bias correction and also overestimated the rainfall extremes for selected Indian locations. Based on the overall performance of four models for the six locations, it was found that the GFDL_ESM2M and NORESM1-M RCMs performed comparatively better than CSIRO and IPSL models. After bias correction, the RCMs could represent the observed climatology better than the GCMs. And these RCMs viz., GFDL_ESM2M and NORESM1-M can be used individually after bias correction in the climate change assessment studies for the selected regions.

Global climate models (GCMs), Regional climate models (RCMs), Rainfall, Temperature.